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The use of lithium 1-N,N-dimethylaminonaphthalenide (LDMAN) is found to be considerably superior in
yield, ease of operation, and cost to the far more widely used lithium p,p0-di-tert-butylbiphenylide (LDBB)
in reductive lithiations by aromatic radical-anions to produce organolithium compounds, provided that
careful temperature control is maintained during the generation of LDMAN. The main reason for the
superiority is the great ease of separation of the aromatic byproduct dimethylaminonaphthalene by a
dilute acid wash.

� 2009 Elsevier Ltd. All rights reserved.
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Two 1978 papers reported the important finding that readily
prepared alkyl phenyl thioethers could be converted into alkyllith-
ium compounds by the aromatic radical-anion lithium naphthale-
nide (LN).1 Since that time, such reductive lithiation has developed
into one of the most versatile methods known for generating syn-
thetically useful organolithiums.2 Other leaving groups have also
been used, but they have proven considerably less versatile than
the phenylthio group.2 In 1980, two more useful aromatic lithium
radical-anions, lithium 1-N,N-dimethylaminonaphthalenide3

(LDMAN) 1, and lithium p,p0-di-tert-butylbiphenylide4 (LDBB) 2,
were introduced (Fig. 1). The former, 1, has the advantage over lith-
ium naphthalenide that the byproduct of electron transfer, 1-dim-
ethylaminonaphthalene, can be readily separated from the desired
product in most cases by a dilute acid wash and of course it can be
recycled; a subsidiary advantage is that LDMAN can be used in sol-
vents other than THF, the solvent universally used in synthetic pro-
cedures involving aromatic lithium radical-anions.5 The latter, 2,
has the advantage that it is a more powerful reducing agent than
LN and presumably less subject to attack by the intermediate rad-
ical generated in the process of reductive lithiation.

A disadvantage of LDMAN is that above�45 �C it decomposes to
1-lithionaphthalene. This often appeared to be only a minor disad-
vantage since most reductive lithiations are successful at �78 �C.
Furthermore, for those reductive lithiations that require a higher
temperature, a work-around was developed, referred to as the cat-
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alytic method, consisting of using, instead of preformed LDMAN,
lithium metal and 25% 1-N,N-dimethylaminonaphthalene
(DMAN).3 The reasoning was that because the rate of reductive
lithiation is greater than that of formation of the radical-anion,
the concentration of radical-anion and especially of the dianion,
suspected of being the precursor of 1-lithionaphthalene, would re-
main extremely low and thus production of the latter would be
inhibited.2,6 Nevertheless, the use of the catalytic method is not a
perfect solution to the problem of the decomposition of LDMAN
at temperatures above �45 �C, because in many cases the use of
preformed radical-anion gives superior results to the use of a cat-
alytic amount of the aromatic species.2

The use of LDMAN is rather widespread,2,3,5,7,8 but considerably
less so than the use of LDBB.6b,9 In the past in our own laboratory,
LDBB has generally been chosen unless the product of electrophile
capture of the generated organolithium is non-polar in which case
the use of LDMAN is virtually mandatory in order to ease the sep-
aration of the aromatic byproduct from the desired product. The
reason for the preference for LDBB is that except in cases in which
there is a separation problem, LDBB generally gave somewhat
superior yields than LDMAN.10,7a
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Figure 1. Radical-anion reductive lithiation reagents.
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Scheme 2. Comparison of LDBB and LDMAN in the reductive lithiation of 4-
(phenylthio)-1-butene.
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Scheme 3. Comparison of LDBB and LDMAN in the production of a tertiary
organolithium by reductive lithiation.
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Scheme 4. Comparison of LN and LDMAN in the reductive lithiation of a alkyl
chloride.
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A careful reexamination of the procedure11 for the preparation
of LDMAN has now revealed a previously unrecognized problem,
the elimination of which makes LDMAN the reagent of choice in
reductive lithiations. The problem is that the decomposition of
LDMAN in THF actually commences at a noticeable rate even below
�45 �C and that most if not all temperature controllers do not
maintain a very constant temperature. For optimum yield, it is nec-
essary to not allow the temperature to rise above �52 �C.12 We
have found that this is best accomplished by maintaining a tem-
perature of �55 ± 3 �C by manual control.13 Under these condi-
tions, the preparation takes about 5 h. At a lower temperature,
the time that the control must be maintained becomes impractical.
When this procedure14 is followed, every example that we have
tested provides higher yields than the use of LDBB in preparative
scale reductive lithiations. We also provide an example in which
LDMAN gives a far better yield than that reported for the use of
LN. In three of these comparisons, we repeated literature reductive
lithiations but replaced the LN or LDBB with LDMAN whereas in
the fourth, we tested LDBB against LDMAN for an unreported
reductive lithiation and trapping.

The reported7c reductive lithiation of 2,2-bis(phenylthio)pro-
pane 3 with LDBB followed by capture of the product with methyl
vinyl ketone (MVK) in the presence of cuprous bromide and TMSCl
led to the formation of the corresponding ketone 4, which could be
separated from the aromatic byproduct DBB by using slow column
chromatography (5% EtOAc/hexane, Rf = 0.1). Subsequent quantita-
tive Wittig olefination afforded the 2,5-dimethyl-5-(phenyl-
thio)hexene 5 in 70% yield over two steps (Scheme 1).7c On the
other hand, because DMAN can be completely removed with dilute
aqueous HCl, the use of LDMAN instead of LDBB in the same syn-
thetic routine leads to a 95% yield of the essentially pure ketone
4, which can be submitted to Wittig olefination without the need
of any further purification to afford the desired alkene 5 in 93%
overall yield (Scheme 1).

In another example, 4-(phenylthio)-1-butene 6 was treated in
separate experiments with LDBB and LDMAN and the reduction
product was treated with methyl vinyl ketone (MVK) in the pres-
ence of cuprous bromide and TMSCl. In the case of LDBB, column
separation of the large amount of DBB from the product 7 is incon-
venient. Thus, vacuum distillation is performed to obtain the pure
product 7 in only a moderate 61% yield (Scheme 2). However, in
the case of LDMAN, carefully prepared at �55 �C, it becomes possi-
ble again to remove the aromatic byproduct DMAN and then use
fast column chromatography for product purification to afford
7-octene-2-one 7 in 87% yield (Scheme 2).

In the reductive lithiation of 8,7c although the improvement in
the yield of purified product in going from LDBB to LDMAN was
only minor, the improvement in ease of operation was great. In
the case of reduction with LDBB, the reported separation of organic
products required an extremely slow and time consuming column
chromatography (3% EtOAc/hexane; Rf = 0.1) (Scheme 3). However,
when LDMAN is used instead, the aromatic amine byproduct
DMAN is completely removed with dilute HCl and fast and effec-
tive flash column chromatography (20% EtOAc/hexanes; Rf = 0.7)
can thus be used (Scheme 3).
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Scheme 1. Comparison of LDBB and LDMAN in the reductive lithiation of a
thioacetal.
A dramatic example of the avoidance of separation problems by
the use of LDMAN is a comparison of recently published data on
the selective reductive lithiation of 1-chloro-4-(phenylthio)butane
10 with LN and capture of the resulting organolithium with diethyl
ketone.15 When LN is used for selective lithiation (Scheme 4), only
very slow column chromatography on silica gel (10% EtOAc/hex-
ane; Rf = 0.11) can be used for effective separation to afford the de-
sired tertiary alcohol 11 in only 36% yield.15 Because DMAN reacts
extremely fast with a 3 M aqueous solution of HCl, a nearly stoichi-
ometric amount of this acid can be used to wash out the DMAN
completely with no harm to the tertiary alcohol 11. Such chemi-
cally activated extraction allows one to obtain essentially pure
product, which could be further purified by flash column chroma-
tography using either basic alumina (93% yield) or even by using
fast silica gel column with 20% ethyl acetate solution in hexane
as eluant (Rf = 0.6) in 82% yield of purified product 11 (Scheme
4). Moreover, after being exposed to extremely slow silica gel col-
umn chromatography, the yield of the alcohol 11 decreased dra-
matically to 65%, undoubtedly because of dehydration.

In conclusion, LDMAN has been found to be superior to LDBB
and LN, heretofore the most widely used reagents for the prepara-
tion of organolithium compounds by reductive lithiation using aro-
matic radical-anions. It was previously thought that LDMAN was
only preferred when the product of capture of the resulting orga-
nolithium with an electrophile was very difficult to separate from
the byproduct aromatic hydrocarbon since the aromatic byproduct
in the case of LDMAN is a Lewis base and can be removed from the
reaction mixture by an acid wash even if the reaction mixture con-
tains a tertiary alcohol. Furthermore, it was believed that LDBB
generally gave slightly higher yields of product than LDMAN. How-
ever, it has now been discovered that the decomposition of LDMAN
commences at �52 �C rather than at �45 �C, as previously thought,
and that if care is taken to maintain a temperature of �55 ± 3 �C
during the generation of the LDMAN, the latter is far superior to
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LDBB in reductive lithiations and it almost certainly should be the
default choice. Another good reason for the choice of LDMAN is
that the price of its precursor 1-N,N-dimethylaminonaphthalene
is over three times less than that of p,p0-di-tert-butylbiphenyl
and the former is easier to recover and recycle.
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